Abstract

We introduce OpenEyeSim, a detailed three-dimensional biomechanical model of the human extraocular eye muscles including a visualization of a virtual environment. The main purpose of OpenEyeSim is to serve as a platform for developing models of the joint learning of visual representations and eye-movement control in the perception-action cycle. The architecture and dynamic muscle properties are based on measurements of the human oculomotor system. We show that our model can reproduce different types of eye movements. Additionally, our model is able to calculate metabolic costs of eye movements. It is also able to simulate different eye disorders, such as different forms of strabismus. We propose OpenEyeSim as a platform for studying many of the complexities of oculomotor control and learning during normal and abnormal visual development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.