Abstract

A variety of nucleic acid components and related compounds undergo photoreaction with water to form so-called "photohydrates" (e.g. uracil forms 6-hydroxy-5,6-dihydrouracil). However, the corresponding hydrates of 5-methylcytosine (a minor nucleobase in eukaryotic DNA) and related compounds have not been characterized. We report the preparation of opened-ring forms of such products for 5-methylcytosine (m5C) and 1,5-dimethylcytosine (DMC). This was accomplished via thermal reaction of ring-opened amine adducts (e.g. N-carbamoyl-3-amino-2-methylacrylamidine (IVa) or N-(N'-methylcarbamoyl)-3-amino-2-methylacrylamidine (IVb)) produced by photo-induced reactions of m5C with ammonia or methylamine. When these adducts were treated with dilute trifluoroacetic acid, the amino group at the 3-position was replaced with a hydroxyl group; with IVa, N-carbamoyl-3-hydroxy-2-methylacrylamidine (Va) was formed, while reaction of IVb led to N-(N'-methylcarbamoyl)-3-hydroxy-2-methylacrylamidine (Vb). These compounds are ring-opened isomers of 5,6-dihydro-6-hydroxy-5-methylcytosine (Ia and IIa) and 5,6-dihydro-6-hydroxy-1,5-dimethylcytosine (Ib and IIb). Compounds Va and Vb each undergo thermal ring closure reactions to form two unstable compounds with chemical and UV spectral properties expected for Ia and IIa (or Ib and IIb). The latter compounds have been identified as minor products in UV-irradiated aqueous solutions of m5C and DMC. Evidence is also presented that the 2'-deoxycytidine photohydrates coexist with an opened-ring form, possibly similar in nature to Vb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.