Abstract

Abstract OpenCL and OpenACC are generic frameworks for heterogeneous programming using CPU and accelerator devices such as GPUs. They have contrasting features: the former explicitly controls devices through API functions, while the latter generates such procedures along a guide of the directives inserted by a programmer. In this paper, we apply these two frameworks to a general-purpose code set for numerical simulations of lattice QCD, which is a computational physics of elementary particles based on the Monte Carlo method. The fermion matrix inversion, which is usually the most time-consuming part of the lattice QCD simulations, is offloaded to the accelerator devices. From a viewpoint of constructing reusable components based on the object-oriented programming and also tuning the code to achieve high performance, we discuss feasibility of these frameworks through the practical implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.