Abstract

In this paper, fault detection and an isolation technique for an insulated-gate bipolar transistor open-circuit fault in a voltage source inverter are presented. This technique consists of analysing the pole voltage and providing the detection and the location of simple, simultaneous and multiple faults. Open-circuit faults can be detected by sensing the pole voltage of each leg and comparing it with the theoretical one. To improve the calculation speed and reliability of this technique and to avoid false diagnosis alarms, the fault detection and isolation scheme is based on a novel model of pole voltage taking into account the time delays due to the turn-on and turn-off process of the power switches. This method reduces the detection time and is applied for open-loop or closed-loop faults in a transient or steady state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.