Abstract

The Silicon-Crystal application based on molecular dynamics (MD) is used to simulate the thermal conductivity of the crystal, which adopts the Tersoff potential to simulate the trajectory of the silicon crystal. Based on the OpenACC version, to better solve the problem of discrete memory access and write dependency, task pipeline optimization and the interval graph coloring scheduling method are proposed. Also, the part of codes on CPEs is vectorized by the SIMD command to further improve the computational performance. After the collaborative development of OpenACC+Athread, the performance has been improved by 16.68 times and achieves 2.34X speedup compared with the OpenACC version. Moreover, the application is expanded to 66,560 cores and can simulate reactions of 268,435,456 silicon atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call