Abstract
Traditional object detection algorithms operate within a closed set, where the training data may not cover all real-world objects. Therefore, the issue of open-world object detection has attracted significant attention. Open-world object detection faces two major challenges: “neglecting unknown objects” and “misclassifying unknown objects as known ones.” In our study, we address these challenges by utilizing the Region Proposal Network (RPN) outputs to identify potential unknown objects with high object scores that do not overlap with ground truth annotations. We introduce the reselection mechanism, which separates unknown objects from the background. Subsequently, we employ the simulated annealing algorithm to disentangle features of unknown and known classes, guiding the detector’s learning process. Our method has improved on multiple evaluation metrics such as U-mAP, U-recall, and UDP, greatly alleviating the challenges faced by open world object detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.