Abstract
Open Wilson line operators and the generalized star product have been studied extensively in non-commutative gauge theories. We show that they also show up in non-commutative scalar field theories as universal structures. We first point out that the dipole picture of non-commutative geometry provides an intuitive argument for robustness of the open Wilson lines and generalized star products therein. We calculate the one-loop effective action of the non-commutative scalar field theory with cubic self-interaction and show explicitly that the generalized star products arise in the non-planar part. It is shown that, in the low-energy, large non-commutativity limit, the non-planar part is expressible solely in terms of the scalar open Wilson line operator and descendants, the latter being interpreted as composite operators representing a closed string.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.