Abstract

Magnetic phase transition in the Fe60Al40 transition metal aluminide from the ferromagnetic disordered A2-phase to the paramagnetic ordered B2-phase as a function of annealing up to 1000 °C has been investigated by means of magneto-optical and spectroscopy techniques, i.e., Kerr effect, positron annihilation, and Mössbauer spectroscopy. The positron annihilation spectroscopy has been performed in-situ sequentially after each annealing step at the Apparatus for In-situ Defect Analysis that is a unique tool combining positron annihilation spectroscopy with temperature treatment, material evaporation, ion irradiation, and sheet resistance measurement techniques. The overall goal was to investigate the importance of the open volume defects onto the magnetic phase transition. No evidence of variation in the vacancy concentration in matching the magnetic phase transition temperature range (400–600 °C) has been found, whereas higher temperatures showed an increase in the vacancy concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.