Abstract
In this paper, we generalize Walcher's computation of the open Gromov–Witten invariants of the quintic hypersurface to Fano and Calabi–Yau projective hypersurfaces. Our main tool is the open virtual structure constants. We also propose the generalized mirror transformation for the open Gromov–Witten invariants, some parts of which are proven explicitly. We also discuss possible modification of the multiple covering formula for the case of higher-dimensional Calabi–Yau manifolds. The generalized disk invariants for some Calabi–Yau and Fano manifolds are shown and they are certainly integers after resummation by the modified multiple covering formula. This paper also contains the direct integration method of the period integrals for higher-dimensional Calabi–Yau hypersurfaces in the Appendix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.