Abstract

Weighted model counting (WMC) has recently emerged as an effective and general approach to probabilistic inference, offering a computational framework for encoding a variety of formalisms, such as factor graphs and Bayesian networks.The advent of large-scale probabilistic knowledge bases has generated further interest in relational probabilistic representations, obtained by according weights to first-order formulas, whose semantics is given in terms of the ground theory, and solved by WMC. A fundamental limitation is that the domain of quantification, by construction and design, is assumed to be finite, which is at odds with areas such as vision and language understanding, where the existence of objects must be inferred from raw data. Dropping the finite-domain assumption has been known to improve the expressiveness of a first-order language for open-universe purposes, but these languages, so far, have eluded WMC approaches. In this paper, we revisit relational probabilistic models over an infinite domain, and establish a number of results that permit effective algorithms. We demonstrate this language on a number of examples, including a parameterized version of Pearl's Burglary-Earthquake-Alarm Bayesian network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.