Abstract

Preparation of a novel TpBD (synthesized from phloroglucinol and benzidine) covalent organic framework (COF) immobilized open-tubular (OT) capillary is described by in situ growth strategy. The stationary phase in the column was characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption–desorption isotherms, scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectrum (EDS). Several families of compounds with different properties (alkylbenzenes, parabens, sulfonamides and benzoic acids) were selected to evaluate the performance of the TpBD COF immobilized capillary. The results showed that the stationary phase was uniform with about 6.0 μm thickness under the optimal preparation conditions, and the relative standard deviations (RSDs) were no more than 3.13% of alkylbenzenes on the TpBD COF immobilized capillary for 11 consecutive runs, which exhibited its excellent reproducibility and stability. A rapid baseline separation of each family of the analytes (neutral parabens, amphoteric sulfonamides and acidic benzoic acids) was obtained in less than 6 min with a resolution (Rs) of 2.79~9.30, which sufficiently verified the rapid separation, high resolution and wide application range of the TpBD COF immobilized capillary, and further revealed this strategy of fabricating COF to capillary column to show great promise in capillary electrochromatography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.