Abstract
AbstractUnderstanding fracture openness in the Earth's crust is crucial for understanding fracture properties and their impact on fluid flow and potentially also in reservoir modelling. Here, we present cases showing the presence of open tensile fractures at depth in anticlines by integrating borehole imaging logs, core observations, casting sections, physical modelling, in‐situ stress analysis and production data in petroleum wells, and analysing the time of fracturing by fluid inclusion analysis. The data come from the Cretaceous Bashejiqike Formation in the Kuqa Depression, Tarim basin; its current depth varies between 6,000 and 8,100 m. The results show that tensile fractures are the main fracture type in the studied formation and that their hydraulic conductivity is poorly affected by the current maximum horizontal stress direction. Furthermore, we find that fracture development is uninterrupted during continued anticline folding, although there is a dominant time of fracturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.