Abstract

A simple collision model is employed to introduce elementary concepts of open system dynamics of quantum systems. In particular, within the framework of collision models we introduce the quantum analogue of thermalization process called quantum homogenization and simulate quantum decoherence processes. These dynamics are driven by partial swaps and controlled unitary collisions, respectively. We show that collision models can be used to prepare multipartite entangled states. Partial swap dynamics generates W-type of entanglement saturating the CKW inequalities, whereas the decoherence collision models creates GHZ-type of entangled states. The considered evolution of a system in a sequence of collisions is described by a discrete semigroup E_1,...,E_n. Interpolating this discrete points within the set of quantum channels we derive for both processes the corresponding Lindblad master equations. In particular, we argue that collision models can be used as simulators of arbitrary Markovian dynamics, however, the inverse is not true.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.