Abstract

Step counts are increasingly used in public health and clinical research to assess well-being, lifestyle, and health status. However, estimating step counts using commercial activity trackers has several limitations, including a lack of reproducibility, generalizability, and scalability. Smartphones are a potentially promising alternative, but their step-counting algorithms require robust validation that accounts for temporal sensor body location, individual gait characteristics, and heterogeneous health states. Our goal was to evaluate an open-source, step-counting method for smartphones under various measurement conditions against step counts estimated from data collected simultaneously from different body locations ("cross-body" validation), manually ascertained ground truth ("visually assessed" validation), and step counts from a commercial activity tracker (Fitbit Charge 2) in patients with advanced cancer ("commercial wearable" validation). We used 8 independent data sets collected in controlled, semicontrolled, and free-living environments with different devices (primarily Android smartphones and wearable accelerometers) carried at typical body locations. A total of 5 data sets (n=103) were used for cross-body validation, 2 data sets (n=107) for visually assessed validation, and 1 data set (n=45) was used for commercial wearable validation. In each scenario, step counts were estimated using a previously published step-counting method for smartphones that uses raw subsecond-level accelerometer data. We calculated the mean bias and limits of agreement (LoA) between step count estimates and validation criteria using Bland-Altman analysis. In the cross-body validation data sets, participants performed 751.7 (SD 581.2) steps, and the mean bias was -7.2 (LoA -47.6, 33.3) steps, or -0.5%. In the visually assessed validation data sets, the ground truth step count was 367.4 (SD 359.4) steps, while the mean bias was -0.4 (LoA -75.2, 74.3) steps, or 0.1%. In the commercial wearable validation data set, Fitbit devices indicated mean step counts of 1931.2 (SD 2338.4), while the calculated bias was equal to -67.1 (LoA -603.8, 469.7) steps, or a difference of 3.4%. This study demonstrates that our open-source, step-counting method for smartphone data provides reliable step counts across sensor locations, measurement scenarios, and populations, including healthy adults and patients with cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call