Abstract

ABSTRACTInversion of airborne electromagnetic data is often an iterative process, not only requiring that the researcher be able to explore the impact of changing components, such as the choice of regularisation functional or model parameterisation, but also often requiring that forward simulations be run and fields and fluxes visualised in order to build an understanding of the physical processes governing what we observe in the data. In the hope of facilitating this exploration and promoting the reproducibility of geophysical simulations and inversions, we have developed the open-source software package SimPEG. The software has been designed to be modular and extensible, with the goal of allowing researchers to interrogate all of the components and to facilitate the exploration of new inversion strategies. We present an overview of the software in its application to airborne electromagnetics and demonstrate its use for visualising fields and fluxes in a forward simulation, as well as its flexibility in formulating and solving the inverse problem. We invert a line of airborne time-domain electromagnetic data over a conductive vertical plate using a 1D voxel inversion, a 2D voxel inversion and a parametric inversion, where all of the forward modelling is done on a 3D grid. The results in this paper can be reproduced using the provided Jupyter notebooks. The Python software can also be modified to allow users to experiment with parameters and explore the physics of the electromagnetics and intricacies of inversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call