Abstract
Creating patient-specific models of the heart is a promising approach for predicting outcomes in response to congenital malformations, injury, or disease, as well as an important tool for developing and customizing therapies. However, integrating multimodal imaging data to construct patient-specific models is a nontrivial task. Here, we propose an approach that employs a prolate spheroidal coordinate system to interpolate information from multiple imaging datasets and map those data onto a single geometric model of the left ventricle (LV). We demonstrate the mapping of the location and transmural extent of postinfarction scar segmented from late gadolinium enhancement (LGE) magnetic resonance imaging (MRI), as well as mechanical activation calculated from displacement encoding with stimulated echoes (DENSE) MRI. As a supplement to this paper, we provide MATLAB and Python versions of the routines employed here for download from SimTK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.