Abstract

The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System (RPAS), is leading to a growing demand for new image processing and classification tools. This article presents a comparison of the Random Forest (RF) and Support Vector Machine (SVM) machine-learning algorithms for extracting land-use classes in RPAS-derived orthomosaic using open source R packages.The camera used in this work captures the reflectance of the Red, Blue, Green and Near Infrared channels of a target. The full dataset is therefore a 4-channel raster image. The classification performance of the two methods is tested at varying sizes of training sets. The SVM and RF are evaluated using Kappa index, classification accuracy and classification error as accuracy metrics. The training sets are randomly obtained as subset of 2 to 20% of the total number of raster cells, with stratified sampling according to the land-use classes. Ten runs are done for each training set to calculate the variance in results. The control dataset consists of an independent classification obtained by photointerpretation. The validation is carried out(i) using the K-Fold cross validation, (ii) using the pixels from the validation test set, and (iii) using the pixels from the full test set.Validation with K-fold and with the validation dataset show SVM give better results, but RF prove to be more performing when training size is larger. Classification error and classification accuracy follow the trend of Kappa index.

Highlights

  • The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System (RPAS), is causing a growing demand for new tools for image processing and classification

  • In particular RPAS are applied to fields that benefit from close-range sensing, such as 3D modelling of cultural heritage and archaeology, environmental sciences, precision forestry and precision agriculture [3,4,5,6,7]

  • Machine learning techniques are classification/regression methods for analysing data. They can be used for supervised and unsupervised classification. They use algorithms that learn from previous computation, and they were recently applied in investigations regarding cotton crop [8], variable-rate fertilization [9], classification of invasive weed species [10], detecting landing sites [11, 12], geological mapping [13], Land Use/Land Cover (LULC) classification [14,15,16,17,18]

Read more

Summary

Introduction

The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System (RPAS), is causing a growing demand for new tools for image processing and classification. Classification is applied in many research fields such as geomorphology, environmental analyses, land use, fragmentation of habitats and risk assessment [1, 2] just to name a few. In particular RPAS are applied to fields that benefit from close-range sensing, such as 3D modelling of cultural heritage and archaeology, environmental sciences, precision forestry and precision agriculture [3,4,5,6,7]. Machine learning techniques are classification/regression methods for analysing data. They can be used for supervised and unsupervised classification. They use algorithms that learn from previous computation, and they were recently applied in investigations regarding cotton crop [8], variable-rate fertilization [9], classification of invasive weed species [10], detecting landing sites [11, 12], geological mapping [13], Land Use/Land Cover (LULC) classification [14,15,16,17,18]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call