Abstract
Demineralized bone matrix (DBM) is considered one of the most reliable bone tissue grafts for regular surgical use, as it provides a scaffold that is structurally like native bone, and that enhances bone regeneration. However, commercially available DBM products are not suited for surgical restitutions of large bones. Therefore, each Tissue Bank is urged to implement their own demineralization protocol, which usually does not meet the high demand for bone grafting. In this project, we developed an open source system for medium-scale manufacturing of DBM grafts from human cadaveric donors to automate the demineralization protocol and improve its reproducibility. The device consists in (1) unidirectional flow reaction chamber, where the demineralization protocol takes place; (2) automated syringe pump, which controls the reagent́s inlet and vacuum; and (3) reagent dispenser, for the management of the reagents need for the demineralization protocol. Validation of the device included histological analysis, DNA quantification temperature regulation, electrochemiluminescence and colorimetric protocols, followed by the optimization of physicochemical parameters based on Response Surface Methodology. The results showed values of residual lipids and calcium within standardized ranges, and the maintenance of the structural integrity of the DBM, demonstrating the capacity of the system to support the proposed demineralization protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.