Abstract

Modeling the response of gamma detectors has long been a challenge within the nuclear community. Significant research has been conducted to digitally replicate instruments that can cost over USD 100,000 and are difficult to operate outside of a laboratory setting. The large cost and availability prevent some from making use of such equipment. Subsequently, there have been multiple attempts to create cost-effective codes that replicate the response of sodium-iodide and high-purity germanium detectors for data derivation related to gamma-ray interaction with matter. While robust programs do exist, they are often subject to export controls and/or they are not intuitive to use. Through the use of hybrid Monte Carlo methods, MATLAB can be used to produce a fast first-order response of various gamma-ray detectors. The combination of a graphical user interface with a numerical-based script allows for open-source and intuitive code. When benchmarked with experimental data from Co-60, Cs-137, and Na-22, the code can numerically calculate a response comparable to experimental and industry-standard response codes. Evidence supports both savings in computational requirements and the inclusion of an intuitive user experience that does not heavily compromise data when compared to other standard codes, such as MCNP and GADRAS, or experimental results. When the application is installed on a Dell Intel i7 computer with 16 cores, the average time to simulate the benchmarked isotopes is 0.26 s. Installation on an HP Intel i7 four-core machine runs the same isotopes in 1.63 s. The results indicate that simple gamma detectors can be modeled in an open-source format. The anticipation for the MATLAB application is to be a tool that can be easily accessible and provide datasets for use in an academic setting requiring gamma-ray detectors. Ultimately, this article provides evidence that hybrid Monte Carlo codes in an open-source format can benefit the nuclear community in both computational time and up-front cost for access.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.