Abstract
We here present a chatbot assistant infrastructure (https://www.ebi.ac.uk/pride/chatbot/) that simplifies user interactions with the PRIDE database's documentation and dataset search functionality. The framework utilizes multiple Large Language Models (LLM): llama2, chatglm, mixtral (mistral), and openhermes. It also includes a web service API (Application Programming Interface), web interface, and components for indexing and managing vector databases. An Elo-ranking system-based benchmark component is included in the framework as well, which allows for evaluating the performance of each LLM and for improving PRIDE documentation. The chatbot not only allows users to interact with PRIDE documentation but can also be used to search and find PRIDE datasets using an LLM-based recommendation system, enabling dataset discoverability. Importantly, while our infrastructure is exemplified through its application in the PRIDE database context, the modular and adaptable nature of our approach positions it as a valuable tool for improving user experiences across a spectrum of bioinformatics and proteomics tools and resources, among other domains. The integration of advanced LLMs, innovative vector-based construction, the benchmarking framework, and optimized documentation collectively form a robust and transferable chatbot assistant infrastructure. The framework is open-source (https://github.com/PRIDE-Archive/pride-chatbot).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.