Abstract
Domain adaptation enables effective transfer between source and target domains with different distributions. The latest research focuses on open set domain adaptation; that is, the target domain contains unknown categories that do not exist in the source domain. The existing open set domain adaptation cannot realize the fine-grained recognition of unknown categories. In this paper, we propose an uncertainty analysis evidence model and design a distribution driven active transfer learning (DATL) algorithm. DATL realizes fine-grained recognition of unknown categories with no requirements on the source domain to contain the unknown categories. To explore unknown distributions, the uncertainty analysis evidence model was adopted to divide the high uncertainty space. To select critical instances, a cluster-diversity query strategy was proposed to identify new categories. To enrich the label categories of the source domain, a global dynamic alignment strategy was designed to avoid negative transfers. Comparative experiments with state-of-the-art methods on the standard Office-31/Office-Home/Office-Caltech10 benchmarks showed that the DATL algorithm: (1) outperformed its competitors; (2) realized accurate identification of unknown subcategories from a fine-grained perspective; and (3) achieved outstanding performance even with a very high degree of openness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.