Abstract

Recently, we demonstrated that a nested set of DNA fragments can be obtained by using one specific primer and one semirandom primer in a polymerase chain reaction (PCR). We now describe a strategy for selective deletion mutagenesis that is based on this observation. The gene of interest is cloned as a fusion construct with a selectable marker in a small vector, allowing for PCR amplification of the entire recombinant plasmid. The specific primer is complementary to the vector sequence beyond the gene of interest and is oriented downstream. The 3′ end of the semirandom primer is complementary to a triplet (GAT) that is scattered over the entire open reading frame (ORF). It is shown by nucleotide sequence analysis that deletion mutants result exclusively from annealing of the semirandom primer at different GAT triplets. PCR products resulting fro from annealing to GAT triplets elsewhere in the plasmid are counterselected by the need for replication functions and for the expression of the selectable marker. This technique is demonstrated on the Saccharomyces cerevisiae ORF YCL56C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.