Abstract

We consider a generalized version of the Rabi model that includes a nonlinear, dispersive-type atom-field interaction in addition to the usual linear dipole coupling, as well as cavity dissipation. An effective system of this sort arises, for example, in a quantum simulation of the Rabi model based upon Raman transitions in an optical cavity QED setting [A. L. Grimsmo and S. Parkins, Phys. Rev. A {\bf87}, 033814 (2013)]. For a suitable choice of the nonlinear interaction strength, near degeneracies of the states in the cavity-mode vacuum and single-photon subspaces, in combination with cavity loss, gives rise to an essentially closed cycle of excitations and photon emissions within these subspaces. Consequently, the cavity output field is strongly antibunched. We develop a quantum-trajectory-based description of the system that models its key properties very well, and use a simple dressed-state picture to explain the novel structure of the cavity fluorescence spectrum. We also present numerical results for a potential realization of the system using a rubidium atom coupled strongly to a high-finesse optical cavity mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call