Abstract
Computational motor control covers all applications of quantitative tools for the study of the biological movement control system. This paper provides a review of this field in the form of a list of open questions. After an introduction in which we define computational motor control, we describe: a Turing-like test for motor intelligence; internal models, inverse model, forward model, feedback error learning and distal teacher; time representation, and adaptation to delay; intermittence control strategies; equilibrium hypotheses and threshold control; the spatiotemporal hierarchy of wide sense adaptation, i.e., feedback, learning, adaptation, and evolution; optimization based models for trajectory formation and optimal feedback control; motor memory, the past and the future; and conclude with the virtue of redundancy. Each section in this paper starts with a review of the relevant literature and a few more specific studies addressing the open question, and ends with speculations about the possible answer and its implications to motor neuroscience. This review is aimed at concisely covering the topic from the author's perspective with emphasis on learning mechanisms and the various structures and limitations of internal models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.