Abstract
Let Γ=(V,E) be a graph of order p. Recently, the Sombor index is introduced, defined asSO(Γ)=∑vivj∈E(Γ)dΓ(vi)2+dΓ(vj)2, where dΓ(vi) is the degree of the vertex vi in Γ. Cruz and Rada [4] obtained an upper bound on the Sombor index of unicyclic and bicyclic graphs of order p, but did not characterize the extremal graphs. In the same paper, they mentioned that the maximal graphs over the set of unicyclic and bicyclic graphs with respect to Sombor index, is an interesting problem that remains open. In this paper we completely solve these problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.