Abstract
This paper investigates open-phase fault modeling and fault-tolerant control (FTC) of dual three-phase permanent magnet synchronous machines (DT-PMSMs). A comprehensive fault model that considers both the permanent magnet torque and reluctance torque under the open-phase fault is proposed first. This model shows that under open-phase fault the average torque of DT-PMSM will decrease, while torque ripple will increase significantly. Then, a novel optimized FTC approach is developed based on the proposed model, in which genetic algorithm (GA) is applied to optimize the stator currents to maximize the average torque and minimize the torque ripple under open-phase fault. The proposed fault model and GA-based FTC are applicable to both surface-mounted and interior DT-PMSMs. However, existing approaches neglecting the reluctance torque are only applicable to surfaced-mounted DT-PMSMs. Moreover, the proposed approach is simple in implementation as it employs the original control structure and it is capable of smooth switching between the healthy operation and FTC without inducing noticeable torque pulses. The proposed approach is demonstrated with design examples, compared with existing one and validated with experiments on a laboratory interior DT-PMSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.