Abstract
We describe the observation of the NO3 radical using an incoherent broadband cavity-enhanced absorption spectrometer in an open-path configuration (OP-IBBCEAS) in a polluted summer environment in continental China. The instrument was installed 17 m above the ground at the top of a residential complex near the CAREBeijing-NCP 2014 site in Wangdu, Hebei province, about 200 km southwest of Beijing over the period 28 to 30 June 2014. The separation between the transmitter and receiver components of the instrument was 335 cm and the effective pathlength in clean reference air was ~3.4 km. NO3 was detected above the detection limit on all three nights when the instrument was operational. The maximum mixing ratio measured was ~175 pptv with a detection sensitivity of ~36 pptv for measurements with an average acquisition time of 10 min. While most extractive instruments try to avoid interferences arising from aerosol extinction, the open path configuration has advantages owing to its ability to detect trace gases even in the presence of aerosol loading. Moreover, concurrent retrieval of aerosol optical extinction is possible from analysis of the absorption magnitude of the oxygen B-band at 687 nm. The experimental setup, its calibration, data acquisition, and analysis procedure are discussed, and the results presented here demonstrate the sensitivity and specificity that can be achieved at high spatial and temporal resolution using the novel configuration of IBBCEAS in the open path.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.