Abstract
The present work used a near-infrared methane cavity ring-down spectroscopy (CRDS) sensor to examine performance and limitations of open-path CRDS for atmospheric measurements. A simple purge-enclosure was developed to maintain high mirror reflectivity and allowed >100 hours of operation with mirror reflectivity above 0.99996. We characterized effects of aerosols on ring-down decay signals and found the dominant effect to be fluctuations by large super-micron particles. Simple software filtering approaches were developed to combat these fluctuations allowing noise-equivalent sensitivity of ~6x10-10 cm-1HJ Hz-1/2 within a factor of ~3 of closed-path systems (based on stability of the absorption baseline). Sensor measurements were validated against known methane concentrations in a closed-path configuration, while open-path validation was performed by side-by-side comparison with a commercial closed-path system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Optics Express
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.