Abstract

To achieve high sensitivity and uniformity simultaneously in a surface-enhanced Raman scattering (SERS) substrate, this paper presents the preparation of a flexible and transparent three-dimensional (3D) ordered hemispherical array polydimethylsiloxane (PDMS) film. This is achieved by self-assembling a single-layer polystyrene (PS) microsphere array on a silicon substrate. The liquid-liquid interface method is then used to transfer Ag nanoparticles onto the PDMS film, which includes open nanocavity arrays created by etching the PS microsphere array. An open nanocavity assistant soft SERS sample, "Ag@PDMS," is then prepared. For electromagnetic simulation of our sample, we utilized Comsol software. It has been experimentally confirmed that the Ag@PDMS substrate with silver particles of 50 nm in size is capable of achieving the largest localized electromagnetic hot spots in space. The optimal sample, Ag@PDMS, exhibits ultra-high sensitivity towards Rhodamine 6 G (R6G) probe molecules, with a limit of detection (LOD) of 10-15 mol/L, and an enhancement factor (EF) of ∼1012. Additionally, the substrate exhibits a highly uniform signal intensity for probe molecules, with a relative standard deviation (RSD) of approximately 6.86%. Moreover, it is capable of detecting multiple molecules and can perform real detection on non-flat surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call