Abstract

The selectivity of the linear polymer chain toward its binding moieties has been considered negligible; thus, a clear demonstration showing the best-fit binding of a linear polymer to its guest counterpart is still unknown. Luminescent poly(acrylic acid) (PAA)-stabilized silver nanodots (PAA-AgNDs) have been applied as a turn-on sensor to monitor the interaction between the PAA chain and its binding cations. The binding of cations ions to the PAA chain may cross-link the linear PAA chain via coordination with carboxylate, which increases the rigidity of the polymer chain, retards the nonradiative decay of PAA-AgNDs, and consequently enhances the emission of silver nanodots while inducing a blue-shift of its emission spectrum. For the first time, we have demonstrated that a linear polymer chain can act as an open host to selectively bind to its best-matching cations. Specifically, among Group 2 cations (Mg2+, Ca2+, Sr2+, Ba2+), calcium ions show the strongest bonding to the PAA polymer chain. Our research suggests that, with extra rigidity, the polymer improves its chemical stability as calcium ions cross-linked the linear polymer. Meanwhile, it has also been demonstrated that luminescent silver nanodots can be excellent probes for the detection of polymer activities with straightforward and simple visualization methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.