Abstract

Learner modeling systems so far formulated model learning in three main ways: a learner’s “position” within a lattice of declarative and procedural knowledge about highly structured disciplines such as geometry or physics, a learner’s path through curricular tasks compared to milestones, or profiles of a learner’s achievements on a set of tasks relative to mastery criteria or a peer group. Opening these models to learners identifies for them factors and relations among factors. Open learner models tacitly invite learners to regulate learning. However, contemporary learner models omit data about how learners have and should process information to learn, understand, consolidate and transfer new knowledge and skills. What to do with information opened to learners is opaque. I propose incorporating trace data about learning processes in learner models. Trace data allow generating learning analytics that inform self-regulating learners about potentially productive adaptations to processes they have used to learn. In a context of big data, such elaborated learner models are positioned to collaborate with self-regulating learners. Together, they can coordinate symbiotically, creating a platform for the system to improve its models of learners and for learners to more productively self-regulate learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.