Abstract

Super bioavailability (SUBA) itraconazole (S-ITZ), which releases drug in the duodenum, and conventional itraconazole (C-ITZ), which releases drug in the stomach, were compared in two pharmacokinetic (PK) studies: a 3-day loading dose study and a 15-day steady-state administration study. These were crossover oral bioequivalence studies performed under fed conditions in healthy adult volunteers. In the loading dose study, C-ITZ (two doses of 100 mg each) and S-ITZ (two doses of 65 mg each) were administered three times daily for 3 days and once on day 4 (n = 15). For the steady-state administration study, C-ITZ (two doses of 100 mg each) and S-ITZ (two doses of 65 mg each) were administered twice daily for 14 days and a last dose was administered 30 min after a meal on day 15 (n = 16). Blood samples collected throughout both studies were analyzed for ITZ and hydroxy-ITZ (OH-ITZ) levels. Least-squares geometric means were used to compare the maximum peak concentration of drug after administration at steady state prior to administration of the subsequent dose (Cmax_ss), the minimum drug level after administration prior to the subsequent dose (Ctrough), and the area under the curve over the dosing interval (AUCtau) of each formulation. The ratios of itraconazole (ITZ) and OH-ITZ for S-ITZ to C-ITZ were between 107% and 118% in both studies for Cmax_ss, Ctrough, and AUCtau, which were within the U.S. FDA-required bioequivalence range of 80% to 125%. At the end of the steady-state administration study, 13 of 16 volunteers obtained higher mean ITZ blood Ctrough levels of >1,000 ng/ml when they were administered S-ITZ (81%) than when they were administered C-ITZ (44%). The study drugs were well tolerated in both studies, with similar adverse events (AEs). All treatment-emergent AEs resolved after study completion. One volunteer receiving C-ITZ discontinued due to a treatment-unrelated AE in the steady-state administration study. No serious AEs were reported. Total, trough, and peak ITZ and OH-ITZ exposures were similar between the two formulations. Therefore, SUBA-ITZ, which has 35% less drug than C-ITZ, was bioequivalent to C-ITZ in healthy adult volunteers and exhibited a safety profile similar to that of C-ITZ.

Highlights

  • Super bioavailability (SUBA) itraconazole (S-ITZ), which releases drug in the duodenum, and conventional itraconazole (C-ITZ), which releases drug in the stomach, were compared in two pharmacokinetic (PK) studies: a 3-day loading dose study and a 15-day steady-state administration study

  • No severe adverse events (SAEs) were reported during the conduct of this study, and none of the treatment-emergent adverse event (TEAE) had a significant impact on the safety of the volunteers or on the integrity of the 15-day steady-state administration study results. The results of these two PK comparisons demonstrate that 65-mg S-ITZ capsules are bioequivalent to 100-mg C-ITZ capsules when administered under fed conditions after a 3-day loading dose regimen and at steady state after 15 days

  • We demonstrate that S-ITZ capsules exhibit oral bioequivalence to C-ITZ capsules with 35% less drug and that volunteers receiving the S-ITZ formulation were more likely to reach therapeutic drug levels (Ͼ1,000 ng/ml) than volunteers receiving the C-ITZ formulation when administered at steady state

Read more

Summary

Introduction

Super bioavailability (SUBA) itraconazole (S-ITZ), which releases drug in the duodenum, and conventional itraconazole (C-ITZ), which releases drug in the stomach, were compared in two pharmacokinetic (PK) studies: a 3-day loading dose study and a 15-day steady-state administration study. These were crossover oral bioequivalence studies performed under fed conditions in healthy adult volunteers. When a single dose of S-ITZ was coadministered with a proton pump inhibitor after establishing its steady state, an increase in ITZ plasma exposure was observed [1] These are key attributes that may be helpful in patients with subtherapeutic ITZ serum drug concentrations due to poor absorption of C-ITZ capsule formulations. These studies were undertaken as part of the approval process for S-ITZ required by the U.S FDA [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.