Abstract
Open hole compression (OHC) design criteria often size the thicknesses of composite aircraft skin structures. Therefore, there can be a significant payoff in improving OHC allowables through better characterization of OHC strength and behavior. This study, using progressive damage analysis and empirical methods, provides new insight into OHC strength and failure behavior. OHC failure behavior was modeled using PDHOLEC, a progressive damage, 2-D finite-element code. Ultimate strength predictions were combined into carpet plots over a wide range of layups in three graphite composite material systems. A detailed evaluation of PDHOLEC progressive failure output resulted in the identification of several distinct predicted failure mechanisms. Predicted failure mechanisms and ultimate strengths are compared with OHC test data. Two distinct failure mechanisms for OHC configurations were identified based on the PDHOLEC ailure study and strength trend studies of test data: a 0° ply kinking/buckling failure mechanism and a matrix cracking mechanism. The PDHOLEC predictions and test data were grouped by the identified failure mechanisms. Then curve fit equations were generated to characterize the ultimate strength behavior for each failure mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.