Abstract
We explore the open-ended nature of evolution in Genelife, an evolutionary extension of Conway's Game of Life cellular automaton in which "live" cell states are endowed at birth with a genome that affects their local dynamics and can be inherited. Both genetic sequences and locally connected spatial patterns are analyzed for novelty, keeping track of all new structures, and innovation is quantified using activity statistics. The impacts of both spatial symmetry breaking with nontotalistic rules and superimposed density regulation of the live state proliferation on the open-ended nature of the evolution are explored. Conditions are found where both genetic and spatial patterns exhibit open-ended innovation. This innovation appears to fall short of functional biological innovation, however, and potential reasons for this are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.