Abstract

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse transcriptase PCR (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ = 0.85 to 0.89). Cycle threshold (CT ) values were not significantly different between each prototype and the control, supporting the new swabs' noninferiority (Mann-Whitney U [MWU] test, P > 0.05). Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.

Highlights

  • The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories’ ability to perform high-sensitivity virological testing for SARS-CoV-2

  • Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, more than 2.5 million cases have been diagnosed worldwide [1]. These diagnoses were made using material collected with nasopharyngeal swabs, which provide the highest sensitivity for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during early infection using commercial reverse transcriptase PCR (RT-PCR)based assays [2]

  • We considered stability to autoclaving by repeating phase I testing on postautoclaved materials, manufacturers’ short-term strategies for individual packaging, and manufacturers’ stated ability to produce at least 10,000 swabs per day within a week’s notice

Read more

Summary

Introduction

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories’ ability to perform high-sensitivity virological testing for SARS-CoV-2 To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. To resolve the swab shortage crisis, we have been coordinating an open collaborative process that has brought together many medical centers, individuals, academic laboratories, and both new and well-established manufacturers [10] As part of this process, we have been testing and continuously providing feedback on prototype swabs in order to proceed rapidly but safely toward the development of swabs that can be used clinically, at volumes equal to the need. This process has led to an ongoing clinical trial of several prototype swabs, the first results of which we report here

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.