Abstract
The mass modifications of the open charm ([Formula: see text] and [Formula: see text]) mesons, and their effects on the decay widths [Formula: see text] as well as of the charmonium state, [Formula: see text] to open charm mesons ([Formula: see text]), are investigated in the presence of strong magnetic fields. These are studied accounting for the mixing of the pseudoscalar ([Formula: see text]) and vector ([Formula: see text]) mesons ([Formula: see text], [Formula: see text] mixings), with the mixing parameter, [Formula: see text] of a phenomenological three-point ([Formula: see text]) vertex interaction determined from the observed radiative decay width of [Formula: see text]. For charged [Formula: see text] mixing, this parameter is dependent on the magnetic field, because of the Landau level contributions to the vacuum masses of these mesons. The masses of the charged [Formula: see text] and [Formula: see text] mesons modified due to [Formula: see text] mixing, in addition, have contributions from the lowest Landau levels in the presence of a strong magnetic field. The effects of the magnetic field on the decay widths are studied using a field theoretical model of composite hadrons with quark (and antiquark) constituents. The matrix elements for these decays are evaluated using the light quark–antiquark pair creation term of the free Dirac Hamiltonian for the constituent quark field, with explicit constructions for the charmonium state [Formula: see text], the open charm ([Formula: see text], [Formula: see text], [Formula: see text]) mesons and the pion states in terms of the constituent quark fields. The parameter for the charged [Formula: see text] mixing is observed to increase appreciably with increase in the magnetic field. This leads to dominant modifications to their masses, and hence the decay widths of charged [Formula: see text] as well as [Formula: see text] at large values of the magnetic field. The modifications of the masses and decay widths of the open and hidden charm mesons in the presence of strong magnetic fields should have observable consequences on the production of the open charm ([Formula: see text] and [Formula: see text]) mesons as well as of the charmonium states resulting from noncentral ultra-relativistic heavy ion collision experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.