Abstract

Currently, there is a lack of comprehensive data on the diversity of chemicals present in vaping liquids. To address this gap, a non-targeted analysis of 825 vaping liquids collected between 2017 and 2019 from Canadian retailers was conducted. Prior to mass spectrometry analysis, samples were diluted 1:500 v/v with methanol or acetonitrile. Chemical compound separation and analysis was carried out using gas chromatography and triple quadrupole mass spectrometry (GC-MS/MS) systems operated in the full scan mode and mass range of 35–450 m/z. Mass spectrum for each sample was obtained in electron ionization at 70 eV and processed. Non-targeted identification workflow included use of automated mass spectral deconvolution and identification system (AMDIS), where required, as well as a number of commercially available spectral libraries. In order to validate identities, an in-house database of expected compounds previously detected in vaping liquids was used along with genuine analytical standards for compounds of interest. This resulted in a dataset of over 1,500 unique detected chemicals. Approximately half of these chemical compounds were detected only once in a single product and not in multiple products analyzed. For any sample analyzed, on average, 40% of the chemical constituents appeared to have flavouring properties. The remainder were nicotine and related alkaloids, processing, degradation or indirect additives, natural extractives and compounds with unknown roles. Data published here from the project on the Open Characterization of vaping liquids is unique as it offers a detailed understanding of products’ flavour chemical profiles, the presence and frequency of chemicals of potential health concern, as well as trends and changes in products’ chemical complexity over a three-year period. Non-targeted chemical surveillance such as this present valuable tools to public health officials and researchers in responding to emergent issues such as vaping associated lung injury or informing chemical based strategies which may be aimed at addressing product safety or appeal.

Highlights

  • Nicotine containing vaping products are a less harmful source of nicotine for people who smoke and are unable to cease the use of traditional tobacco products such as combustible cigarettes (Government of Canada, 2020a)

  • During the method development stages significant amount of time was invested in optimizing methodology as to minimize any compounds that may form during chemical analysis and degradation of product carrier solvents

  • More details and discussion are provided on method validation in Supplementary Section S2

Read more

Summary

Introduction

Nicotine containing vaping products are a less harmful source of nicotine for people who smoke and are unable to cease the use of traditional tobacco products such as combustible cigarettes (Government of Canada, 2020a). Vaping products are a highly varied (Office of the Surgeon General, 2016) class of consumer products that continue to rapidly evolve and exhibit dynamic changes in product design and performance. This lack of product homogeneity as well as high variability in product use behaviors are thought to be one of the main reasons for not more fully understanding the harms and benefits of vaping products. Elucidating the chemical composition of vaping liquids informs on the product’s safety and health risks relative to smoking, it can provide information on aspects of product appeal and addiction liability among the products studied

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.