Abstract

Open cell polyurethane foams are often used as cancellous bone surrogates because of their similarities in morphology and mechanical response. In this work, open cell polyurethane foams of three different densities are characterized from morphometric and mechanical perspectives. The analysis of micro-computed tomography images has revealed that the high density foams present the greatest inhomogeneities. Those inhomogeneities promoted the failure location. We have used the finite element models as a tool to estimate elastic and failure properties that can be used in numerical modeling. Furthermore, we have assessed the anisotropic mechanical response of the foams, whose differences are related to the morphometric inhomogeneities. We found significant relationships between morphometry and the elastic and failure response. The detailed information about morphometry, elastic constants and strength limits provided in this work can be of interest to researchers and practitioners that often use these polyurethane foams in orthopedic implants and cement augmentation evaluations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call