Abstract

We propose an open-boundary method for the simulation of the modes of confining dielectric structures. The technique is inclusive of normal modes, but is especially advantageous for the simulation of quasi-normal, or leaky, modes. The central idea is to utilize the asymptotic form of targeted solutions to eliminate the outer part of the computational domain and bring the numerical boundary close to the simulated structure. While a similar approach was previously demonstrated for scalar quantum models, here we put forward a generalization for fully vectorial fields. Accuracy in this new context is validated using step-index and tube-type hollow core fiber geometries. The method has broad applicability, as quasi-bound modes are intrinsic to many systems of interest in optics and photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.