Abstract

This paper presents an open-architecture of CNC system and mirror milling technology for a new-type 5-axis hybrid robot named TriMule. The CNC system with dual CPUs is developed first to achieve human-computer interaction and motion control. Then, three key technologies are integrated in the system for improving the control quality, including singularity avoidance, feedforward control considering joint couplings and real-time error compensation by using externally mounted encoders. Based on these control technologies for single robot system, a collaborative machining strategy on the mirror milling system that consists of two TriMule robots is proposed to control the machining wall thickness of large thin-walled structural parts. Experiments on the TriMule robot and mirror milling system verify that the acceptable machining accuracy on the NAS test part and large thin-walled structural part can be ensured by using the developed CNC system and technologies. The root mean square of wall thickness error using the collaborative machining strategy can be 41.67% lower than the case without using the strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call