Abstract
Emerging research and clinical evidence suggest that the metabolic activity of oocytes may play a pivotal role in reproductive anomalies. However, the intrinsic mechanisms governing oocyte development regulated by metabolic enzymes remain largely unknown. Our investigation demonstrates that Ggps1, the crucial enzyme in the mevalonate pathway responsible for synthesizing isoprenoid metabolite GGPP from FPP, is essential for oocyte maturation in mice. Our findings reveal that the deletion of Ggps1 that prevents protein prenylation in fully-grown oocytes leads to subfertility and offspring metabolic defects without affecting follicle development. Oocytes that lack Ggps1 exhibit disrupted mitochondrial homeostasis and the mitochondrial defects arising from oocytes are inherited by the fetal offspring. Mechanistically, the excessive farnesylation of mitochondrial ribosome protein, Dap3, and decreased levels of small G proteins mediate the mitochondrial dysfunction induced by Ggps1 deficiency. Additionally, a significant reduction in Ggps1 levels in oocytes is accompanied by offspring defects when females are exposed to a high-cholesterol diet. Collectively, this study establishes that MVA pathway-protein prenylation is vital for mitochondrial function in oocyte maturation and provides evidence that the disrupted protein prenylation resulting from an imbalance between FPP and GGPP is the major mechanism underlying impairment of oocyte quality induced by high cholesterol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.