Abstract
The objective of this study was to investigate the developmental morphology of yak oocytes from the primordial follicle to the tertiary follicle. Yak oocytes from resting primordial (n = 6), activated primordial (n = 12), primary (n = 9), secondary (n = 7) and early tertiary (n = 5) follicles were processed and analysed by light and transmission electron microscopy. The resting primordial follicular oocyte was characterized by relatively smooth surface on the oolemma, the accumulation of free and organelle-related smooth (SER) and rough endoplasmic reticulum (RER), round or oval mitochondria, and polyribosomes on the surface of the RER and throughout the ooplasm. The activated primordial follicular oocyte was dominated by numerous coated pits and coated vesicles on the oolemma, and round mitochondria. Up to the secondary follicular stage the oocyte displayed an increase in the number of microvilli, polyribosome, Golgi complexes and mitochondria with distinct cristae. During the secondary follicular stage, formation of the zona pellucida, development of a desmosome-like connection between the oocyte and the granulosa cells, formation of the cortical granules in the oocyte and elongated mitochondria in nearly all oocytes were seen. In the early tertiary follicular oocyte, the perivitelline space was present and a decrease in free SER and RER in the ooplasm occurred; finally, the nucleus migrated from an eccentric to a peripheral location. In conclusion, the growth of the yak oocyte is associated with the relocation and modulation of a number of cytoplasmic organelles as well as the development of oocyte-specific structures such as the zona pellucida, desmosome-like connection and cortical granules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.