Abstract

Normal female fertility relies on proper development of the oocyte. This growth culminates just prior to ovulation, when oocyte maturation occurs. Oocyte maturation refers to a release of meiotic arrest that allows oocytes to advance from prophase I to metaphase II of meiosis. This precisely regulated meiotic progression is essential for normal ovulation and subsequent fertilization, and involves changes in the delicate balance between factors promoting meiotic arrest and others that are stimulating maturation. Most of the inhibitory mechanisms appear to involve the upregulation of intracellular cyclic adenosine monophosphate levels. These processes may include direct transport of the nucleotide into oocytes via gap junctions, G protein-mediated stimulation of adenylyl cyclase, and inhibition of intracellular phosphodiesterases. In contrast, potential factors that play roles in triggering oocyte maturation include gonadotropins (e.g., follicle-stimulating factor and luteinizing hormone), growth factors (e.g., amphiregulin and epiregulin), sterols (e.g., follicular fluid-derived meiosis-activating sterol), and steroids (e.g., testosterone progesterone, and estradiol). Delineating the complex interactions between these positive and negative components is critical for determining the role that oocyte maturation plays in regulating follicle development and ovulation, and may lead to novel methods that can be used to modulate these processes in women with both normal and aberrant fertility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.