Abstract

The structure of the vitellogenic follicle of the sheepshead minnow, Cyprinodon variegatus, is described. Follicles enlarge primarily by protein yolk accumulation (vitellogenesis) and subsequently increase in size by hydration. This study uses the electron-dense tracer, horseradish peroxidase, and a larger heterologous protein, Xenopus laevis [ 3H]vitellogenin, to follow the fate of exogenous proteins from the maternal circulation to yolk spheres of the growing oocyte. Materials appear to leave the perifollicular capillaries via an interendothelial route, traverse the theca and the patent intercellular channels of the follicular epithelium and the pore canals of the vitelline envelope. At the oocyte surface they are incorporated via micropinocytosis and translocated to growing yolk spheres in the peripheral ooplasm. In contrast to other studies on oocyte growth in teleosts which suggest that yolk is an autosynthetic product, this study substantiates the importance of heterosynthetic processes during oocyte growth in C. Variegatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.