Abstract

Cell cycle progression for postembryonic cells requires the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), the enzyme which catalyzes the production of the isoprenoid precursor, mevalonate. In this study, we examine the requirements of HMG-R activity for cell cycle progression during the meiotic and early mitotic divisions using oocytes and dividing embryos from the surf clam, Spisula solidissima. Using two different inhibitors of HMG-R, we find that the activity of this enzyme appears to be required at three distinct points of the cell cycle during meiosis. Depending on the stage at which these inhibitors are added to synchronous clam cultures, a reversible cell cycle block is triggered at the time of activation or at metaphase of either meiosis I or II, whereas there is not block to the mitotic cell cycle. Inhibition of HMG-R activity in activated oocytes does not affect the transient activation of p42MAPK but results in a block at metaphase of meiosis I that is accompanied by the stabilization of cyclins A and B and p34cdc2 kinase activity. Our results suggest that metabolites from the mevalonate biosynthetic pathway can act to influence the process of activation, as well as the events later in the cell cycle that lead to cyclin proteolysis and the exit from M phase during clam meiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.