Abstract

Mycological culture is the traditional method for identifying infecting agents of onychomycosis despite high false-negative results, slower processing, and complications surrounding nondermatophyte mold (NDM) infections. Molecular polymerase chain reaction (PCR) methods are faster and suited for ascertaining NDM infections. To measure agreement between culture and PCR methods for identification of infecting species of suspected onychomycosis, single toenail samples from 167 patients and repeated serial samples from 43 patients with suspected onychomycosis were processed by culture and PCR for identification of 16 dermatophytes and five NDMs. Agreement between methods was quantified using the kappa statistic (κ). The methods exhibited fair agreement for the identification of all infecting organisms (single samples: κ = 0.32; repeated samples: κ = 0.38). For dermatophytes, agreement was moderate (single samples: κ = 0.44; repeated samples: κ = 0.42). For NDMs, agreement was poor with single samples (κ = 0.16) but fair with repeated samples (κ = 0.25). Excluding false-negative reports from analyses improved agreement between methods in all cases except the identification of NDMs from single samples. Culture was three or four times more likely to report a false-negative result compared with PCR. The increased agreement between methods observed by excluding false-negative reports statistically clarifies and highlights the major discord caused by false-negative cultures. The increased agreement of NDM identification from poor to fair with repeated sampling along with their poor agreement in the single samples, with and without false-negatives, affirms the complications of NDM identification and supports the recommendation that serial samples help confirm the diagnosis of NDM infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call