Abstract
The boom of the Social Web has had a tremendous impact on a number of different research topics. In particular, the possibility to extract various kinds of added-value, informational elements from users' opinions has attracted researchers from the information retrieval and computational linguistics fields. However, current approaches to socalled opinion mining suffer from a series of drawbacks. In this paper we propose an innovative methodology for opinion mining that brings together traditional natural language processing techniques with sentimental analysis processes and Semantic Web technologies. The main goals of this methodology is to improve feature-based opinion mining by employing ontologies in the selection of features and to provide a new method for sentimental analysis based on vector analysis. The preliminary experimental results seem promising as compared against the traditional approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.