Abstract

The COVID-19 pandemic has generated massive data in the healthcare sector in recent years, encouraging researchers and scientists to uncover the underlying facts. Mining interesting patterns in the large COVID-19 corpora is very important and useful for the decision makers. This paper presents a novel approach for uncovering interesting insights in large datasets using ontologies and BERT models. The research proposes a framework for extracting semantically rich facts from data by incorporating domain knowledge into the data mining process through the use of ontologies. An improved Apriori algorithm is employed for mining semantic association rules, while the interestingness of the rules is evaluated using BERT models for semantic richness. The results of the proposed framework are compared with state-of-the-art methods and evaluated using a combination of domain expert evaluation and statistical significance testing. The study offers a promising solution for finding meaningful relationships and facts in large datasets, particularly in the healthcare sector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.