Abstract
This paper presents a statistical ontology approach for adaptive object recognition in a situation-variant environment. We propose a context model based on statistical ontology that is concentrated on object recognition. Due to the effects of illumination on a supreme obstinate designing context-sensitive recognition system, we focused on designing a context-variant system using statistical ontology. Ontology, a collection of concepts and their interrelationships, provides an abstract view of an application domain. Researchers produce ontologies in order to understand and explain underlying principles and environmental factors. In this paper, we propose an ontology-based inference system for adaptive object recognition. The proposed method utilizes context ontology, context modeling, context adaptation, and context categorization to design the ontology based on illumination criteria for surveillance. After selecting the proper ontology domain, a set of actions is selected that produces better performance in that domain. We also carried out extensive experiments on these concepts in the area of object recognition in a dynamic changing environment, achieving enormous success that will enable us to proceed with our basic concepts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.