Abstract

The acquisition of executive skills such as working memory, decision-making and adaptive responding occur at different stages of central nervous system development. Zebrafish (Danio rerio) are increasingly used in behavioural neuroscience for complex behavioural tasks, and there is a critical need to understand the ontogeny of their executive functions. Zebrafish across developmental stages (4, 7, 14, 30 and 90 days post fertilisation (dpf)), were assessed to track development of working memory (WM) and behavioural flexibility (BF) using the free movement pattern Y-maze (FMP Y-maze). Several differences in both WM and BF were identified during the transition from yolk-dependent to independent feeding. Specifically, WM is evident in all age groups, even from 4 dpf. However, BF is not developed until larvae start free feeding, and show significant improvement thereafter, with young adults (90 dpf) demonstrating the most well-defined BF. We demonstrate, for the first time, objective WM processes in 4 dpf zebrafish larvae. This suggests that those wishing to study WM in zebrafish may be able to do so from 4 dpf, thus drastically increasing throughput. In addition, we show that zebrafish follow distinct stages of cognitive development and age-related changes during the early developmental period. Finally, our findings indicate distinct WM and BF mechanisms, which may be useful to study for translational purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call